Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Foods ; 12(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37761112

RESUMO

Soy isoflavones are considered important sources of bioactive compounds, but they are poorly absorbable, due to their large hydrophilic structures. Some biotransformation strategies have been used to convert the glycosidic form into aglycones, making them available for absorption. This study evaluated the potential of enzymatic and/or microbial fermentation combined bioprocesses in a soymilk extract before and after gastrointestinal in vitro digestion. Commercial ß-glucosidase (ET) and a mix of commercial probiotics (F) containing Lactobacillus acidophilus, Lactobacillus casei, Lactococcus lactis, Bifidobacterium bifidum, and Bifidobacterium lactis were used to biotransform the soymilk phenolic extract. An isoflavone profile was identified using HPLC-DAD, total phenolic content was identified using the Folin-Ciocalteu test, and antioxidant capacity was identified using ORAC and FRAP. Soymilk enzymatically treated (ET) followed by microbial fermentation (ET + T) resulted in better conversion of glycosylated isoflavones (6-fold lower than control for daidzin and 2-fold for genistin) to aglycones (18-fold greater than control for dadzein and genistein). The total phenolic content was increased (3.48 mg/mL for control and 4.48 mg/mL for ET + T) and the antioxidant capacity was improved with treatments of ET + T (120 mg/mL for control and 151 mg/mL with ORAC) and with FRAP (285 µL/mL for control and 317 µL/mL). After the in vitro digestion, ET + T samples resulted in a higher content of genistein (two-fold higher than control); also, increases in the total phenolic content (2.81 mg/mL for control and 4.03 mg/mL for ET + T) and antioxidant capacity measured with ORAC were greater compared to undigested samples. In addition, the isolated microbial fermentation process also resulted in positive effects, but the combination of both treatments presented a synergistic effect on soy-based products.

2.
Foods ; 11(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37430954

RESUMO

This paper evaluated methodologies for extracting phenolic compounds by DES (Deep eutectic solvents) associated with pectinlyase. Citrus pomace was characterized chemically, and seven DESs were formulated for extraction. Two groups of extractions were performed. Group 1 extractions were performed only with DESs, at 40 °C and 60 °C, with CPWP (Citrus pomace with pectin) and CPNP (Citrus pomace no pectin). In group 2, the DES was associated with pectinlyase and used only with CPWP at 60 °C in two ways of extraction: E1S (one-step extraction) and E2E (2-step extraction). The extracts were evaluated TPC (total phenolic compounds), individual phenolic compounds by HPLC, and antioxidant capacity by methodologies of DPPH and FRAP. The results of group 1 extractions for CPWP showed the highest phenolic compounds concentration (559.2 ± 2.79 mg/100 g DM) at 60 °C. Group 2 (E2S) showed high values of total phenolic compounds (615.63 ± 28.01 mg/100 g DM) and antioxidant activity (23,200 ± 721.69 µmol TE/g DM), with values higher than conventional extraction (545.96 ± 26.80 mg/100 g DM and 16,682.04 ± 2139 µmol TE/g DM). The study demonstrated the excellent extractive potential of DES for flavonoid extraction from citrus pomace. DES 1 and 5 by E2S showed the highest phenolic compounds and antioxidant capacity values, mainly when associated with pectinlyase.

3.
Crit Rev Food Sci Nutr ; 62(1): 145-159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32876475

RESUMO

The lipid phase of infant formulas is generally composed of plant-based lipids structured with a high concentration of palmitic acid (C16:0) esterified at the sn-2 position of triacylglycerol since this structure favors the absorption and metabolism of fatty acids. Palm oil is commonly used to make up the lipid phase of infant formulas due to its high concentration of palmitic acid and solids profile and melting point similar to human milk fat. However, the addition of palm oil to infant formulas has been associated with the presence of 3-monochloropropane-1,2-diol (3-MCPD) esters, a group of glycerol-derived chemical contaminants (1,2,3-propanotriol), potentially toxic, formed during the refining process of vegetable oil. Bovine milk fat obtained from the complex biosynthesis in the mammary gland has potential as a technological alternative to replace palm oil and its fractions for the production of structured lipids to be used in infant formulas. Its application as a substitute is due to its composition and structure, which resembles breast milk fat, and essentially to the preferential distribution pattern of palmitic acids (C16:0) with approximately 85% distributed at the sn-1 and sn-2 position of triacylglycerol. This review will address the relationship between the chemical composition and structure of lipids in infant nutrition, as well as the potential of bovine milk fat as a basis for the production of structured lipids in substitution for the lipid phase of vegetable origin currently used in infant formulas.


Assuntos
Leite Humano , Leite , Animais , Ácidos Graxos , Feminino , Humanos , Lactente , Fórmulas Infantis , Ácido Palmítico , Triglicerídeos
4.
Food Res Int ; 150(Pt A): 110782, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865797

RESUMO

Structured lipids (SL) containing behenic acid have been produced in order to obtain low-calorie lipids for foods; however, the development of a high nutritional value and a stable nanoemulsion carrier system for these SL is an interesting breakthrough for this field of research, improving technologic and biological potential for food application. In this sense, the aim of this study was to evaluate the stability of a nanoemulsion containing SL NeSL (produced with olive oil, soybean oil and fully hydrogenated crambe oil), the behavior during in vitro digestion and the effects on biomarkers involved in the obesity in cell models. The samples showed good stability throughout storage (30 days) under refrigeration and room temperature and after the gastric digestion phase compared to the controls (nanoemulsion of olive and soybean oil). After the intestinal phase, there was an increase in oil droplet size and zeta potential, a characteristic of coalescence. In the lipid accumulation model in adipocytes, the highest concentration (50 µL/mL) of NeSL resulted in 42% less lipid accumulation, compared to the control. Furthermore, the sample was able to reduce inflammatory cytokines produced by macrophages provoked by LPS (lipopolysaccharide). The combination of the oils in NeSL resulted in a fatty acid profile with beneficial health properties, which may have contributed to less lipid accumulation and improved inflammatory parameters. This SL in the form of a nanoemulsion, may be used as a partial fat substitute in low-calorie food products.


Assuntos
Ingestão de Energia , Óleo de Soja , Biomarcadores , Emulsões , Humanos , Obesidade
5.
J Food Sci Technol ; 58(11): 4303-4312, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34538913

RESUMO

The citrus pectin by-product (CPB), generated from pectin industry, is a rich-source of flavanones, but not explored until now. As most of these compounds are inside vacuoles or bound to cell wall matrix, enzymatic hydrolysis was applied on their recovery, followed by hydroalcoholic and ultrasound extraction. Different parameters were studied: enzymes (ß-glucosidase, tannase, and cellulase), their concentration (5, 10, and 20 U g-1 CPB), and reaction time (6, 12, and 24 h). Extracts were characterized in total phenolic content (TPC), antioxidant capacity (ORAC and DPPH assays), and polyphenolic profile (HPLC-DAD). All enzymatic treatments significantly improved CPB antioxidant capacity and TPC, compared with hydroalcoholic and ultrasound extraction. ß-glucosidase (5 U) for 24 h was the most effective in polyphenol extraction and bioconversion, followed by ß-glucosidase (5 U) for 12 h and tannase (5 U) for 24 h. Thus, the concentration of these enzymes was increased (10 and 20 U) to improve flavanones extraction. ß-glucosidase at 20 U offered the highest amount of naringenin (77.63 mg 100 g-1 of CPB) and hesperetin (766.44 mg 100 g-1) obtained so far by biological processes. According to Person's correlation analysis, TPC and antioxidant activity were highly correlated with CPB contents of hesperetin and naringenin. The aglycone flavanones are rarely found in natural sources and have higher biological potential than their glycosylated forms. Our results indicated enzyme-assisted extraction as a good choice for recovering aglycone flavanones from CPB, and increased knowledge on the biological activity of this agroindustrial waste, amplifying their application in food and pharmaceutical field.

6.
Food Res Int ; 147: 110474, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399471

RESUMO

The effects of enzymatic extraction strategies on extractability, bioconversion, and bioaccessibility of biologically active isoflavone aglycones, total phenolic content, and antioxidant activity of aqueous extracts from full-fat soy flour were evaluated. Protease, tannase, and cellulase enzymes were used individually or in combination. Except for the protease treatment, all enzymatic treatments increased the extraction of biologically active isoflavones (daidzein and genistein) compared with the control. The use of a mixture of protease, tannase, and cellulase resulted in increased extractability and/or bioconversion of aglycones from soy flour, indicating a synergistic effect amongst the enzymes. Daidzein and genistein concentrations increased from 29.0 to 158.2 µg/g and from 27.0 to 156.5 µg/g (compared to the control), respectively. Furthermore, enzymatic extraction followed by in vitro gastrointestinal digestion significantly increased the bioaccessibility of isoflavone aglycones, total phenolic content (by 22-45%), and antioxidant activity (by 15-22%) of the extracts. These results demonstrate that enzyme selection is an efficient strategy to maximize the extraction, bioconversion, and bioaccessibility of bioactive isoflavones from soy flour, which could contribute to health benefits associated with the consumption of soy-rich products.


Assuntos
Isoflavonas , Digestão , Farinha , Genisteína
7.
Food Technol Biotechnol ; 58(3): 284-295, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33281484

RESUMO

RESEARCH BACKGROUND: Extracted from the pulp of an Amazonian fruit, buriti oil is rich in micronutrients with antioxidant properties and high biological value. The few studies available indicate that this oil could be used in a wide range of applications; however, there are no studies that work on the improvement in the characteristics of this oil for commercial application. The enzymatic interesterification is one of the tools available to improve the properties of oils and fats and our recent studies have demonstrated that the lipase could specifically act on buriti oil to produce structured lipids rich in oleic acid, while preserving most of the minor compounds present in this oil. Still looking for ways to expand the applicability of this raw oil, in this work, we are interested in studying the behaviour of this structured oil in nanostructured lipid carriers (NLCs). EXPERIMENTAL APPROACH: The NLCs were produced with interesterified buriti oil and the stability, droplet size, electrical charge, microstructure, polymorphism and antioxidant activity of the samples were evaluated by ORAC and FRAP methods. RESULTS AND CONCLUSIONS: The results showed that the interesterification formed more unsaturated triacylglycerols (TAGs), and NLCs prepared with interesterified buriti oil had smaller droplets than NLCs with crude buriti oil. Particles remained stable throughout the storage period and NLCs exhibited complex polymorphism with the presence of three crystalline forms. The oxygen radical absorbance capacity (ORAC) value was approx. 23% higher in nanolipid carries with structured lipids than in the nanolipid carriers with crude buriti oil, and the ferric reducing antioxidant power (FRAP) value 16% higher, demonstrating the influence of interesterification on the antioxidant activity of nanocarriers. Thus, NLCs prepared with interesterified buriti oil had small droplets, high stability and antioxidant capacity, and have a potential for nutritional and biological applications. NOVELTY AND SCIENTIFIC CONTRIBUTION: This research showed that interesterification positively influenced the physicochemical properties of NLCs, producing the oil rich in oleic acid, high stability and antioxidant capacity. Therefore, it may be interesting to use these nanocarriers to obtain efficient carrier systems for future applications.

8.
Appl Microbiol Biotechnol ; 104(23): 10019-10031, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33136177

RESUMO

Isoflavones are phenolic secondary metabolites mainly occurring in soy and soybean products. Compared to glycoside forms, isoflavone aglycones present higher biological activities. This study evaluated the potential of microbial and enzymatic treatments in biotransformed isoflavones in their biologically active forms in soymilk. Seven different cultures of lactic acid bacteria and bifidobacteria associated with the action of immobilized tannase enzyme were screened for isoflavone glycoside biotransformation ability. The biotransformed soymilk samples were characterized regarding isoflavone profile, total phenolic content, and in vitro antioxidant activities. All bacterial strains showed a good growth capacity in soymilk matrix and produced ß-glucosidase enzyme, which hydrolyzed isoflavone glycosides into aglycones in soymilk after 24 h of fermentation. The microbial fermentation followed by tannase reaction (FT processes) resulted in the highest increase of bioactive aglycones (10.3- to 13.1-fold for daidzein, 10.4- to 12.3-fold for genistein, and 3.8- to 4.7-fold for glycitein), compared to control soymilk. Further, FT processes enhanced the total phenolic content (53-70%) and antioxidant activity by ORAC (69-102%) and FRAP (49-71%) assays of the soymilk matrix. Therefore, the combination of microbial fermentation and tannase treatment is a promising strategy to obtain a fermented soy product rich in bioactive isoflavones with greater health-promoting potential. KEY POINTS: • Bacterial cultures and tannase enzyme displayed isoflavone deglycosylation activity. • The addition of tannase following the fermentation maximized the isoflavone conversion. • Increased isoflavone aglycones contributed to the improved antioxidant activity of soymilk.


Assuntos
Isoflavonas , Leite de Soja , Antioxidantes , Biotransformação , Fermentação , Microbiologia de Alimentos , Isoflavonas/análise
9.
Food Chem Toxicol ; 145: 111619, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32791243

RESUMO

This is the first work to use a polyphenolic fraction derived from peanut skin to attenuate the toxicity induced by advanced glycation-end products (AGEs) in RAW264.7 macrophages. The RAW264.7 cells were stimulated by AGEs using the bovine serum albumin-fructose (BSA-FRU), bovine serum albumin-methylglyoxal (BSA-MGO) and arginine-methylglyoxal (ARG-MGO) models. The AGEs increased considerably the levels of reactive oxygen species and the gene expression of proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide. Twenty-eight polyphenols, including catechin, phenolic acids, and resveratrol were annotated in peanut skin extract (PSE) with the use of ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UPLC-QTOF/MSE) and to the UNIFI Scientific Information System. The administration of PSE at 100 and 150 µg/mL significantly inhibited oxidative stress, by suppressing the production of reactive oxygen species up to 70% and reducing the production of nitric oxide, IL-6 and TNF-α up to 1.7-, 10- and 107-fold, respectively.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Arachis/química , Produtos Finais de Glicação Avançada/toxicidade , Nozes/química , Polifenóis/farmacologia , Animais , Interleucina-6/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Bioprocess Biosyst Eng ; 43(6): 1105-1118, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32076836

RESUMO

Buriti oil is rich in monounsaturated fatty acids, carotenoids and tocopherols and it is used for the treatment of various diseases. One strategy to restructure the triglycerides is enzymatic interesterification and nanocarriers have been employed to improve the solubility, bioavailability and stability of active compounds. This work aims to investigate the in vitro cytotoxicity of this structured oil in nanoemulsions and nanostructured lipid carriers to expand the applicability of the crude oil. None of the samples had a cytotoxic effect on Caco-2 and HepG2 cell lines at the concentrations tested. Structured lipids acted protecting against oxidative stress and lipid peroxidation. Additionally, no consumption of glutathione has been observed in both cells, and the compounds present in buriti oil are possibly acting as antioxidants. Thus, nanoparticles prepared with interesterified buriti oil had low cytotoxicity and high oxidative stability, with great potential for future applications.


Assuntos
Carotenoides , Portadores de Fármacos , Nanoestruturas , Óleos de Plantas , Células CACO-2 , Carotenoides/química , Carotenoides/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Avaliação de Medicamentos , Células Hep G2 , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Óleos de Plantas/química , Óleos de Plantas/farmacologia
11.
J Food Biochem ; 44(3): e13149, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31960461

RESUMO

The present study investigated, in in vitro cellular model, the modulation of intestinal inflammation by biotransformed soymilk with tannase and probiotic strains. The ability to reduce the generation of intracellular reactive oxygen species (ROS) and the antioxidant power of soy extracts were also evaluated. The results showed changes in isoflavones profile after biotransformation processes, with a significative enhancement in aglycones content. Reduction in intracellular ROS production and improvement in antioxidant capacity were observed. Anti-inflammatory responses in Caco-2 cells were also expressive. A significative decrease in interleukin 8 (IL-8) level was detected for all biotransformed samples, especially for extracts with tannase. The biotransformed soy extracts by tannase have a great potential to improve health conditions, defending the intestinal cells of oxidative damage, and acting as a possible adjuvant in inflammatory process. PRACTICAL APPLICATIONS: Soy isoflavones have been explored owing to health benefits. Only glycosylated forms are found in high concentrations in soybeans. So, microbial and enzymatic biotransformation processes aiming to increase aglycones and metabolites appear as an attractive option to enlarge the bioactivity of soy products. The present study showed a positive impact of biotransformed soymilk on antioxidant defenses systems and modulation of intestinal inflammation and could act as a nutraceutical agent.


Assuntos
Isoflavonas , Anti-Inflamatórios/farmacologia , Biotransformação , Células CACO-2 , Fermentação , Humanos , Isoflavonas/farmacologia
12.
Acta sci., Biol. sci ; 42: e52115, fev. 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1460955

RESUMO

Esterases are enzymes that present good potential for industrial applications since they catalyze the formation or cleavage of ester bonds in water-soluble substrates, and sorghumseeds can represent an alternative source of this enzyme. The extraction of esterase from sorghumseeds is an economical alternative to obtain an enzyme of great interest. Esterases may improve the quality or accelerate the maturation of cheeses, cured bacon and fermented sausages and may also resolve racemic mixtures. Recently, seed esterases have been the focus of much attention as biocatalysts. In some cases, these enzymes present advantages over animal and microbial lipases due to some quite interesting features such as specificity and low cost, being a great alternative for their commercial exploitation as industrial enzymes The esterase studied here was extracted from sorghumseeds and some of its biochemical properties determined using synthetic substrates (p-nitrophenyl butyrate, caprylate, laurate and palmitate). The enzyme presented optimum activity at pH 8.0 and was stable in all the pH ranges studied. The optimum temperature for its activity was 40ºC but it showed low stability at this temperature (40% relative activity). The values derived for Km and Vmax were 0.67mM and 125 U.mg-1, respectively, obtained using p-nitrophenyl butyrate as the substrate. The enzyme showed an increase in activity when K2HPO4was added to the reaction medium, but the ions Mn2+, CO+, Hg+and Fe2+strongly inhibited the enzyme activity. This enzyme showed a preference for the hydrolysis of short chain fatty acids. The characteristics of sorghumesterase are very similar to those of the microbial esterases used in detergent processing.


Assuntos
Esterases/análise , Esterases/química , Sorghum/química , Álcalis
14.
J Food Biochem ; 43(7): e12850, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31353709

RESUMO

The present study aimed to investigate, in in vitro assays, the antilipogenic and antiinflammatory potential as well as the antioxidant capacity of biotransformed soymilk by tannase and ß-glycosidase enzymes. The results showed a significant enhancement of the antioxidant capacity, especially by biotransformed soymilk with free tannase (SFT), corresponding to an increase of 2.3 and 1.25 times by oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays, respectively. The lipid accumulation reduction by 3T3-L1 adipocytes assay was not significant. However, the antiinflammatory responses were expressive. In lipopolysaccharide-stimulated RAW 264.7 macrophages, SFT reduced around 37 times TNF-α expression at the highest tested concentration of the sample. Other inflammatory parameters, as IL-6 and nitric oxide, were no longer detected when the cells were treated with SFT and soymilk with immobilized enzymes, respectively. The biotransformed soy extracts with tannase have great potential to act as a nutraceutical, protecting the cells against oxidative damage and helping maintain health under inflammatory stress. PRACTICAL APPLICATIONS: Soy isoflavones have been associated with several beneficial effects on human health, including inhibition capacity of lipid accumulation in adipocytes, antiinflammatory properties, and antioxidant potential. However, the isoflavones bioavailability differs among their chemical forms, and studies have shown that the higher health benefits are conferred by aglycones and their metabolites, such as equol, compared to the other forms. For this reason, the enrichment of isoflavone aglycones and metabolites in soy-based products has attracted growing attention. The present study was focused on developing a bioprocess able to produce a rich extract with soy isoflavones metabolites, with increased bioactive potential for application as a functional ingredient or a nutraceutical.


Assuntos
Biotransformação , Isoflavonas/farmacologia , Leite de Soja , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Hidrolases de Éster Carboxílico , Humanos , Interleucina-6/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Células RAW 264.7 , Leite de Soja/química , Leite de Soja/farmacologia , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , beta-Glucosidase
15.
Food Sci Biotechnol ; 27(5): 1301-1309, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30319838

RESUMO

Significant amounts of citrus by-products remain after juice processing, which is then used to obtain pectin. The pectin industry then generates a new waste. No study has characterized this residue or suggested applications for it. The main goal of this study was to compare citrus industrial by-products that remain after juice (CJB) and pectin (CPB) extraction, aiming to obtain bioactive compounds. The residues were evaluated for their chemical composition, antioxidant capacity, and polyphenols content. CJB had 2-fold higher total phenols than CPB. Moreover, CJB exhibited higher antioxidant capacity than CPB. Nine polyphenols were detected; hesperidin was the main compound on both residues. CPB had higher content of polyphenols than CJB, which can be attributed to the industry procedure of pectin extraction. Thus, this study provides support for the reuse of CPB to obtain nutraceutical compounds, converting waste into added-value products.

16.
Food Res Int ; 108: 68-73, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735102

RESUMO

The objective of this study was to evaluate in vitro bioaccessibility of calcium (Ca), iron (Fe) and zinc (Zn) in soy drink after phytase treatment and correlate it with the content of myo-inositol phosphates. Samples of commercial soy drink products and one sample produced in the laboratory by maceration were evaluated. Phytase was applied using 300 U per liter in 60 min considering the phosphate release. The content of myo-inositol tris-, tetrakis-, pentakis and hexakisphosphate was not observed after phytase treatment. The solubility assay showed an increase from 2.0% to 20.8% for Ca, 2.2% to 37.1% for Fe and 38.8% to 67.4% for Zn after phytase treatment with significant differences (p ≤ 0.05) for most samples. Dialysis assay demonstrated 1.0% to 9.5% for Ca after phytase treatment (p ≤ 0.05) except for one commercial sample. The phytase treatment is a valuable alternative process for improving mineral natural availability in soy drink and decreased the use of salts in the fortification.


Assuntos
6-Fitase/química , Bebidas/análise , Manipulação de Alimentos/métodos , Minerais/análise , Valor Nutritivo , Ácido Fítico/análise , Alimentos de Soja/análise , Cálcio/análise , Digestão , Análise de Alimentos/métodos , Fosfatos de Inositol/análise , Ferro/análise , Zinco/análise
17.
Food Funct ; 9(3): 1889-1898, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29537001

RESUMO

Phenolic acids have been reported to play a role on the antioxidant activity and other important biological activities. However, as most polyphenolics in food products are either bound to cellular matrices or present as free polymeric forms, the way they are absorbed has not been totally clear until now. Hydrolytic enzymes may act to increase functionalities in polyphenolic-rich foods, enhancing the bioaccessibility of phenolic compounds and minerals from whole grains. The aim of this study was to evaluate the action of tannin acyl hydrolase (tannase) on the total phenols, phenolic acid profile, antioxidant capacity and in vitro bioaccessibility of phenolic acids found in whole rye flour (RF). Besides increasing total phenols and the antioxidant capacity, tannase treatment increased the amounts of ferulic, sinapic and vanillic acids identified in RF, evidencing a new type of feruloyl esterase catalytic action of tannase. Vanillic and sinapic acids in tannase-treated whole rye flour (RFT) were higher than RF after in vitro gastrointestinal digestion, and higher amounts of transported vanillic acid through the Caco-2 monolayer were detected in RFT. However, the bioaccessibility and the transport efficiency of RF phenolic acids were higher than RFT. Underutilized crops like rye and rye-derived products may be an important source of phenolic acids. The tannase biotransformation, even influencing the total phenolics and antioxidant capacity of RF, did not increase the bioaccessibility of phenolic acids under the experimental conditions of this study.


Assuntos
Antioxidantes/química , Hidrolases de Éster Carboxílico/química , Células Epiteliais/metabolismo , Manipulação de Alimentos/métodos , Proteínas Fúngicas/química , Hidroxibenzoatos/química , Secale/química , Antioxidantes/metabolismo , Transporte Biológico , Biotransformação , Células CACO-2 , Farinha/análise , Humanos , Hidroxibenzoatos/metabolismo , Paecilomyces/enzimologia , Sementes/química
18.
Food Res Int ; 99(Pt 1): 713-719, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28784535

RESUMO

The objective of this work was to produce structured lipids (SLs) from olive oil (O), soybean oil (S), and fully hydrogenated crambe oil - FHCO (C) mixtures by enzymatic interesterification, comparing Lipozyme TL IM and Rhizopus sp. performances as catalysts, and to evaluate their physical and chemical modifications. Among other blends (OC 90:10 w/w and SC 90:10 w/w), OSC (45:45:10, w/w), presented the most nutritionally interesting amounts of mono- and polyunsaturated fatty acids, as well as behenic acid. Interesterification caused an increase in crystallization time and a decrease in the solid fat content in all blends. The fatty acid redistribution in the TAGs caused a change in thermal behavior, leading to a decrease in the onset and end temperatures during crystallization, which indicates that new TAGs were formed. Regarding regiospecificity, Lipozyme TL IM lipase acted randomly, while Rhizopus sp. lipase was specific for the sn-1,3 position. Therefore, it was possible to synthesize SLs presenting different physical and chemical properties, compared to the original OSC blend, containing behenic acid at the sn-1,3 position and unsaturated fatty acids at the sn-2 position, by enzymatic interesterification catalyzed either by Lipozyme TL IM or by Rhizopus sp. lipases.


Assuntos
Fármacos Antiobesidade/análise , Ácidos Graxos Essenciais/análise , Lipídeos/análise , Azeite de Oliva/análise , Óleo de Brassica napus/análise , Óleo de Soja/análise , Fármacos Antiobesidade/química , Crambe (Planta)/química , Ácidos Graxos/análise , Ácidos Graxos/química , Ácidos Graxos Essenciais/química , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/química , Lipídeos/química , Azeite de Oliva/química , Óleo de Brassica napus/química , Óleo de Soja/química
19.
Food Res Int ; 97: 37-44, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28578062

RESUMO

Chronic non-communicable diseases such as obesity are preceded by increased macrophage infiltration in adipose tissue and greater secretion of pro-inflammatory cytokines. We evaluated the anti-inflammatory potential of Biotransformed extract, and two control extracts: In Natura and Autoclaved. The assays were performed using a cellular model with RAW264.7, 3T3-L1 cells, and RAW264.7 and 3T3-L1 co-culture. The innovation of the study was the use of Biotransformed extract, a unique phenolic extract of a bioprocessed citrus residue. LPS stimulated RAW264.7 cells treated with the Biotransformed extract exhibited lower secretion of TNF-α and NO and lower protein expression of NFκB. In RAW264.7 and 3T3-L1 co-culture, treatment with 1.0mg/mL of the Biotransformed extract reduced secretion of TNF-α (30.7%) and IL-6 (43.4%). Still, the Biotransformed extract caused higher increase in adiponectin in relation to control extracts. When the co-culture received a LPS stimulus, the Autoclaved extract at 1.0mg/mL reduced IL-6 and TNF-α concentrations, and raised adiponectin. However, it was noteworthy that the Biotransformed extract was also able to significantly reduce IL-6 concentration while the Natural extract was not. The Biotransformed citrus extract evaluated in this study showed anti-inflammatory activity in macrophages and in co-culture, indicating that bioprocess of citrus residue can contribute to new product development with anti-inflammatory potential.


Assuntos
Adipócitos/efeitos dos fármacos , Anti-Inflamatórios/metabolismo , Citrus/química , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Células 3T3-L1 , Animais , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Biotransformação , Sobrevivência Celular/efeitos dos fármacos , Citocinas/análise , Citocinas/metabolismo , Fermentação , Camundongos , Extratos Vegetais/metabolismo , Polifenóis/metabolismo , Células RAW 264.7
20.
Food Res Int ; 95: 52-58, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28395825

RESUMO

Obesity affects all social classes, making it necessary to develop effective products that aid weight loss or help prevent weight gain. The objective of this work was to study the anti-obesity effects of structured lipids (SL) obtained by enzymatic interesterification, based on olive oil, soy oil and fully hydrogenated crambe oil. Twenty-four C57Bl/6 mice were distributed into four experimental groups according to the diet consumed: Control Diet (CD), Structured Lipids Diet (SLD), High-fat Control Diet (HCD), High-fat Structured Lipids Diet (HSLD). The animals that were fed SLs presented a smaller weight gain, despite a larger intake of the diet. The lowest weight gain was reflected in reduced amounts of adipose tissue and lower liver weight. A significant increase in lipids excreted by the animals in the feces was observed, despite there being no sign of toxicity or presence of diarrhea. The animals that consumed the HSLD presented lower total and LDL-cholesterol, increased HDL-cholesterol and increased hepatic arachidonic acid and docosahexaenoic acid levels. In addition, they did not develop hepatic steatosis. The study therefore showed that SLs could play a major role in combating or preventing obesity and other resultant diseases, without producing side effects.


Assuntos
Fármacos Antiobesidade/farmacologia , Ácidos Graxos/farmacologia , Obesidade/prevenção & controle , Animais , Ácido Araquidônico , Glicemia/metabolismo , Colesterol/sangue , Dieta Hiperlipídica , Ácidos Docosa-Hexaenoicos/farmacologia , Metabolismo Energético , Fígado Gorduroso/prevenção & controle , Fezes/química , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Azeite de Oliva/química , Triglicerídeos/sangue , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...